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Summary
Background Mapping gut microecological features to serum metabolites (SMs) will help identify functional links
between gut microbiome and cardiometabolic health.

Methods This study encompassed 836-1021 adults over 9.7 year in a cohort, assessing metabolic syndrome (MS),
carotid atherosclerotic plaque (CAP), and other metadata triennially. We analyzed mid-term microbial
metagenomics, targeted fecal and serum metabolomics, host genetics, and serum proteomics.

Findings Gut microbiota and metabolites (GMM) accounted for 15.1% overall variance in 168 SMs, with individual
GMM factors explaining 5.65%–10.1%, host genetics 3.23%, and sociodemographic factors 5.95%. Specifically, GMM
elucidated 5.5%–49.6% variance in the top 32 GMM-explained SMs. Each 20% increase in the 32 metabolite
score (derived from the 32 SMs) correlated with 73% (95% confidence interval [CI]: 53%–95%) and 19% (95% CI:
11%–27%) increases in MS and CAP incidences, respectively. Among the 32 GMM-explained SMs, sebacic acid,
indoleacetic acid, and eicosapentaenoic acid were linked to MS or CAP incidence. Serum proteomics revealed
certain proteins, particularly the apolipoprotein family, mediated the relationship between GMM-SMs and
cardiometabolic risks.

Interpretation This study reveals the significant influence of GMM on SM profiles and illustrates the intricate con-
nections between GMM-explained SMs, serum proteins, and the incidence of MS and CAP, providing insights into
the roles of gut dysbiosis in cardiometabolic health via regulating blood metabolites.
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Development Program of Guangzhou, 5010 Program for Clinical Research of Sun Yat-sen University, and the
‘Pioneer’ and ‘Leading goose’ R&D Program of Zhejiang.
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license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction
Cardiovascular diseases (CVDs), the primary cause of
death worldwide, result in approximately 17.9 million
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fatalities annually.1 Modifiable risk factors like athero-
sclerosis, metabolic syndrome (MS), along with related
intestinal microecology and host metabolic traits, play a
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Research in context

Evidence before this study
Recent studies increasingly recognize the gut microbiome’s
crucial role in cardiometabolic health, primarily through its
influence on blood metabolites. However, human research on
how microbial features contribute to the blood metabolome
has been limited and yielded mixed results. The link between
gut microbiome-associated serum metabolites (SMs),
cardiovascular diseases, and intermediary blood proteins
remains unclear.

Added value of this study
This extensive longitudinal study demonstrates that gut
microbiota and metabolites (GMM) — encompassing species,
MetaCyc pathways, and fecal metabolome — accounts for
significant variance in total and 32 individual SM profiles.
Several SMs (like oxoglutaric acid, citramalic acid,
eicosapentaenoic acid, indoleacetic acid, suberic acid,

chenodeoxycholic acid, glycoursodeoxycholic acid, and sebacic
acid, and the combined 32-SM score) have been identified as
crucial SMs linking GMM and the incidence of metabolic
syndrome and carotid atherosclerotic plaque. Serum
proteomics revealed that certain proteins, particularly the
apolipoprotein family, mediated the relationship between
GMM-SMs and cardiometabolic risks.

Implications of all the available evidence
Our findings emphasize GMM’s influence on SMs in the
elderly and its potential in modulating blood metabolites and
proteins for cardiovascular disease prevention. The
identification of specific SMs that connect gut microecology
and serum proteins with cardiometabolic health provides
valuable evidence for future intervention strategies and
elucidating the microbiota’s role in cardiometabolic health.
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crucial role in the risk of CVDs.2 A deeper under-
standing of the basis of these cardiometabolic traits can
shed light on the prevention, diagnosis, and treatment
of CVD.

Recent research increasingly underscores the pivotal
role of gut microbiome and related microecology in
human cardiometabolic health.3 This influence largely
hinges on a diverse array of metabolites produced by gut
microbiota.4 Many individual serum metabolites (SMs)
originating from gut microbiota, such as short-chain
fatty acids (SCFAs), trimethylamine oxide, uremic
toxins, bile acids, anthocyanins, and lipopolysaccha-
rides, have been identified as potential influencers of
CVD risk.5 These findings highlight the gut microbiota’s
capacity to impact cardiometabolic health via various
blood metabolites.

To date, human studies investigating the contribu-
tion of microbial features to the blood metabolome have
been limited and yielded inconsistent results.6,7 For
example, in an Israeli cohort of 491 individuals, mi-
crobial taxa were found to explain over 40% of the
variance in 10 blood metabolites, including quinate.6 A
Dutch study involving 1368 participants revealed that
the top five plasma metabolites driven by the gut
microbiome (species and pathways) were p-cresol, sul-
furous acid, p-cresol sulfate, acetyl-N-formyl-5-methoxy
kynurenamine, and 2,3-diketogulonate.7 A recent study
suggests a significant correlation between the gut fecal
metabolites and microbial composition, accounting for
67.7% of the variance.8 However, differences in associ-
ations between microbial taxonomic composition and
their pathways with metabolites, depending on whether
fecal or blood metabolites are used,9 indicate a need for
more detailed investigation into their specific roles in
the relationships between gut microbiota and car-
diometabolic diseases. To our knowledge, however, no
research has yet examined the contribution of fecal
metabolites to variance in SM profile. Given the scarce
evidence available, there is also a lack of robust evidence
elucidating the extent to which the gut microbiota and
metabolites (GMM) explain SMs, especially the fecal
metabolites, which is a functioning readout of gut
microbiota and can be employed as a middle phenotype
moderating host–microbiome interactions.8,10 Moreover,
evidence for a robust relationship between fecal
microbiota-associated SMs and CVD and possible
intermediate blood proteins has not been identified.

This study elucidated the extent to which overall SM
and individual SMs could be explained by GMM,
including species, pathways, and fecal metabolites. We
focused on identifying the critical contributors within
GMM-explained SMs (GMM-SMs) and determined the
associations between GMM-SMs and the risks of
developing MS and carotid atherosclerotic plaque
(CAP). Through untargeted serum proteomics analysis,
we also sought to uncover potential serum proteins that
may link GMM-SMs and MS/CAP risk in a 9.7-year
Chinese cohort population.
Methods
Ethics
The study protocol (No. 2018048) has received approval
from the Ethics Committee of the School of Public
Health at Sun Yat-sen University. Every participant gave
their written informed consent, abiding by the guide-
lines set forth by the institution.

Study participants and study design
Fig. 1 shows the study design with more details in
Supplementary Methods. The research utilized data
from the Guangzhou Nutrition and Health Study
www.thelancet.com Vol 105 July, 2024
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Fig. 1: Study design and main findings. Abbreviations: CAP: carotid atherosclerotic plaque; CVD: cardiovascular diseases; GMM: gut microbiota
and metabolites; GNHS: Guangzhou Nutrition and Health Study; SMs: serum metabolites; MS: metabolic syndrome; SHBG: sex hormone
binding globulin.
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(GNHS). This is a population-based prospective study,
with the purpose of exploring the influence of nutri-
tional factors on cardiometabolic phenotypes, which is
registered at www.clinicaltrials.com under the identifier
NCT03179657. Participants were sourced from diverse
communities across Guangzhou city (South China)
primarily through local advertising, health seminars,
and referrals. The study enrolled 4048 healthy in-
dividuals aged 40 to 75 from 2008 to 2013 in Guangz-
hou, China. Data collection occurred triennially from
2008 to 2021. At baseline and during subsequent follow-
ups, participants underwent triennial visits to the School
of Public Health for direct interviews, physical evalua-
tions, and sample collection. The procedures remained
consistent across visits. Detailed information was
published in the cohort profile.11 GNHS data have
significantly contributed to understanding the impact of
nutrition on metabolic diseases through multi-omic
approaches. Multi-omics information of participants
was determined using the samples collected during
2015–2019. Finally, this study included 836–1021 par-
ticipants with data of GMM (microbial species and
pathways based on metagenome sequencing of fecal
microbiome, and metabolome), host serummetabolomics
and proteomics and whole genotyping, and 9.7-year
incidence of MS and CAP.

Fecal sample collection procedure
The fecal sample collection followed a standardized
protocol. Individuals were instructed to collect fecal
specimen if they didn’t use any antibiotics and have a
trip out of the city in the past 14 days. The
www.thelancet.com Vol 105 July, 2024
characteristics of the stool were also recorded. Collection
was performed either on-site or at home using sterile
containers with ice. Fecal specimen was immediately
transported to the laboratory within 1–2 h. All subse-
quent processing steps were conducted in a fume hood
to maintain an aseptic environment after surface ster-
ilization. The fecal specimens were thoroughly homog-
enized, aliquoted into 2 ml sterile tubes (each >1.0 g),
and stored at a temperature of −80 ◦C until further
analysis.

Blood sample collection procedure
Venous blood samples (about 10 ml) were collected
using non-anticoagulant vacuum tubes in the following
morning after about 10-h fasting and allowed to coag-
ulate by leaving it at room temperature for 1 h. Serum
was then separated into five tubes after centrifuged at
3000 rpm and 4 ◦C for a duration of 10 min. These al-
iquots of serum were stored at a temperature of −80 ◦C
until further analysis.

Gut microbiome data analysis
Fecal samples underwent metagenomic sequencing
form a library, with each sample being multiplexed and
analyzed using an Illumina HiSeq machine following a
150-bp paired-end read protocol. Average 5,835,670
reads per sample were obtained. We applied PRINSEQ
v0.20.4 for data quality control. Reads aligned to the
human genome (H. sapiens, UCSC hg19) were excluded
using Bowtie2 v2.2.5. For taxonomic analysis, Meta-
PhlAn2 v2.6.0 was employed, utilizing a library of
clade-specific markers to achieve bacterial quantification
3
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at the level of species.12 The abundance of metabolic
pathways was annotated using HUMAnN2, which
mapped reads to a functionally annotated pan-genome
custom database. The reads were further grouped into
160 species (Table S1) and 448 pathways from the
MetaCyc Metabolic Pathways Database (Table S2).

Host genotyping data
Genotyping was performed using the Illumina ASA-750K
chip. PLINK1.913 software was used for quality control
and association screening. Individuals exhibiting extreme
heterozygosity, defined as values outside the range of the
mean ± 3 SDs, were excluded from the analysis.14

Profiling the metabolome in serum and stool
specimen
The metabolome in serum and feces were measured
employing a targeted metabolomics profiling approach
by an ACQUITY UPLC-MS/MS Xevo TQ-S (ultra-high-
performance liquid chromatography-tandem mass
spectrometry) from Waters Corp., (MA, USA). This
approach quantified 199 fecal metabolites and 168 SMs,
encompassing a diverse array of compounds, including
bile acids, amino acids, benzenes, fatty acids, carbohy-
drates, carnitines, cinnamic acids, organic acids, in-
doles, nucleosides, phenylpropanoic acids, organic
oxygen compounds, pyridines, peptidomimetics, and
pyrroles (Tables S3 and S4).

Measurement of serum proteomics
After sample preparation, a liquid chromatography
coupled to tandem mass spectrometry system (Eksigent
NanoLC 400, Dublin, CA, USA) were analyzed peptide
samples. The system was coupled with a Triple TOF
5600 system (SCIEX, CA, USA). Data acquisition was
conducted using the Sequential Window Acquisition of
All Theoretical Fragment Ions-Mass Spectrum
(SWATH-MS) technique.15 Analysis with OpenSWATH
(2.1)16 against a pan-human spectral library17 annotated
438 serum proteins.

Diagnostic criteria for incident cardiometabolic
diseases
MS was defined according to the Third Edition Asian
Chinese criteria from the National Cholesterol Educa-
tion Program Adult Treatment Panel.18 CAP was
diagnosed by a carotid intima-media thickness (cIMT)
equal to or greater than 1.5 mm in accordance with the
European Mannheim Consensus.19 Incident MS or CAP
was identified in participants who were free of these
conditions at baseline but developed them during the
9.7 follow-up period.

Statistical analysis
Data preparation
Listwise deletion was employed for missing data in the
primary variables–GMM, SMmetrics, and cardiometabolic
incidences. In contrast, median imputation was utilized
for serum proteomics data, pertained to secondary
research objectives. For covariates with missing values,
data from adjacent follow-ups were imputed. Regarding
the omics data for GMM, we conducted non-parametric
analyses after transforming the raw data to relative abun-
dance or concentration. Both SMs and proteomic data
were standardized to Z-scores for linear regression anal-
ysis and categorized into gender-specific quintiles for Cox
regression analysis.

Mapping explanations of GMM and host factors for overall
SM variations
To estimate the contribution of GMM and host factors
on overall variance in SM profiles, we employed feature
selection through permutation multivariate analysis of
variance (PERMANOVA) based on Bray–Curtis dis-
tances using R “vegan” package, with 999 permuta-
tions.20 Initially, GMM factors (species, pathways, and
fecal metabolites) were analyzed separately to estimate
their contribution to overall inter-individual SM varia-
tions, retaining only those with a permutational
P < 0.05. Genetic variants were included based on single
nucleotide polymorphisms (SNPs) associated with SMs.
A combined PERMANOVA model then estimated the
total contribution of all features.

Mapping explanations of GMM for individual SM variations
To elucidate the collective influence of GMM on indi-
vidual SMs and identify key GMM contributing factors,
we used random forest algorithm, utilizing the ‘ran-
domForest’ R package (ntree = 1000, mtry = the number
of predictor features/3). This approach regressed the
species, pathways, and fecal metabolites against SM
quintiles. Over 100 iterations, we ranked variables based
on feature importance, which was determined by the
difference in Mean Squared Error (MSE, post-shuffle
MSE minus original MSE). The most critical GMM
features were those causing the highest increase in
MSE.

Associations of GMM-related SMs with incident CAP and MS
risks
Cox regression analysis was employed to determine the
association between the top 32 GMM-explained SMs and
the risks of incident MS and CAP, adjusted for sex,
education, age, smokers, household income, marital sta-
tus, tea drinkers, alcohol drinkers, physical activity,
multivitamin use, daily energy intake and other signifi-
cant SMs with step-wise variable selection (SPSS 12,
SPSS Inc.). This analysis led to the creation of the 32
metabolite score (32-SMS). This score, calculated for each
individual, aggregates the quintile values of serum me-
tabolites, adjusted in accordance with the β coefficient of
their association with incident MS. The associations of
32-SMS with the risk of MS and CAP were also calculated
after further adjusting for BMI for sensitivity analyses.
www.thelancet.com Vol 105 July, 2024
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Restricted cubic spline (RCS) analyses (R package ‘rms’,
knots = 4) were utilized to flexibly model the associations
of the 32-SMS and crucial individual metabolites (iden-
tified by a P-value <0.01 in the above Cox regression) with
incident MS or CAP risks.

Association of SMs, serum proteins and incident
cardiometabolic diseases
Linear regression model was employed to detect the
association of SMs with serum proteins, verifying model
assumptions (linearity, independence, normality, and
homoscedasticity) through residual and predicted value
plots. Cox regression, utilizing R packages ‘survival’ and
‘MASS’, was utilized to assess the link between serum
proteins and incident cardiometabolic diseases, with
scaled Schoenfeld residuals employed to confirm the
proportional hazards assumption.

Visualizing the relationship of GMM, SMs and metabolic
traits with a network
In order to visualize GMM-SM-cardiometabolic trait
relationships, we plotted the network, which was con-
structed according to the Spearman coefficients higher
than 0.12 (all P < 0.00015). The network was visualized
using the program Cytoscape.21

Role of funders
Funding sponsors had no role in the design of the study;
in the collection, analyses, or interpretation of data; in
the writing of the manuscript; or in the decision to
publish results.
Results
Participants’ characteristics
Numbers of individuals at each part of the study were
reported in Fig. 1. This study encompassed 836 to 1021
participants with data related to GMM, host serum
metabolomics and proteomics, along with whole geno-
typing. Additionally, we recorded a 9.7-year incidence of
MS (199 diagnosed) and CAP (477 diagnosed). Of the
992 participants with serum metabolome included in
the study, 311 were male and 681 were female. Those
participants with higher 32-SMS tended to be older and
exhibited higher BMI (Table S5).

The variances of overall serum metabolome
explained by gut microbiome and metabolome
In assessing the relative contributions of host charac-
teristics, genetics, and GMM to the serum metabolome,
we quantified the variance attributable to these factors
in the overall SM profile. Through pairwise association
analysis between each SMs and genetic variants, thir-
teen unique genetic variants were identified (Table S6).
Separate PERMANOVA models were then used to
evaluate the contribution of each microecological
feature type to the overall SM, including only features
www.thelancet.com Vol 105 July, 2024
with P < 0.05 in the feature selection phage. These an-
alyses identified 12 species (Table S7), 26 pathways
(Table S8), and 45 fecal metabolites (Table S9).

The variance (R2) in SM profiles was explained by
species (5.65%), pathways (9.87%), fecal metabolites
(10.1%), and combined GMM factors (15.1%), as shown
in Table S10. These percentages surpassed those
explained by host demographic and socioeconomic fac-
tors (5.95%) and genetics (3.23%). Collectively, these
factors accounted for 25.3% of the total variance in the
whole serum metabolome (Fig. 2A, Table S11). The top
five contributors of each category including the following
species (Bifidobacterium longum, Clostridium nexile, Meg-
amonas hypermegale, Faecalibacterium prausnitzii, and
Klebsiella unclassified), pathways (benzoyl-CoA degrada-
tion I [PWY1361], 4-deoxy-L-threo-hex-4-enopyranuronate
degradation [PWY6507], l-arginine biosynthesis II
[ARGSYNBSUBPWY], and superpathways of heme
biosynthesis from glutamate [PWY5918] and glycine
[PWY5920]), and fecal metabolites (2-phenylpropionate,
rhamnose, L-histidine, L-leucine, and L-glutamic acid), as
detailed in (Fig. 2B–D).

Variances in individual serum metabolites
explained by gut microbiota and metabolites
Analysis of 168 individual SMs revealed that GMM
accounted for 5.5%–49.6% variance in 32 key metabolites
(Fig. 2E). The top five among these SMs were glyco-
lithocholic acid 3-sulfate (3S-GLCA), 2-phenylpropionate,
hydrocinnamic acid, glycodeoxycholic acid, and deoxy-
cholic acid (Fig. S1A and Table S12). Among the three
GMM categories (species, pathways, and fecal
metabolites), random forest models revealed that fecal
metabolites were the primary influencers for the
majority of these SMs, particularly fecal 2-
phenylpropionate, 7-ketodeoxycholic acid (7-DHCA),
hydrocinnamic acid, lithocholic acid, and phenylacetic
acid (Fig. S1A). Notably, Eubacterium hallii stood out as a
critical determinant for eight specific SMs (e.g., glyceric
acid, suberic acid, and adipic acid) (Fig. S1A and
Table S12). The most five influential factors in the three
GMM categories for these 32 SMs were further delin-
eated (Fig. S1B–F and Table S12).

Serum metabolites, CVD-related proteins, and
cardiovascular diseases or risk factors
Heatmap and forest charts showed associations of the
top 32 GMM-SMs with CVD-related proteins, CVD risk
factors, and incident cardiometabolic diseases (Fig. 3A).
The 32-SMS, derived from these GMM-SMs, exhibited
an inverse association with HDL cholesterol, whereas
tended to be positively correlate with other car-
diometabolic traits. Cox regression and restricted cubic
spline analyses indicated significant linear or nonlinear
associations between SM concentrations and the risk of
cardiometabolic diseases (MS and CAP). Notably,
32-SMS (unadjusted HR 1.77 and 1.20, respectively, and
5
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Fig. 2: Contribution of host and gut microbial factors to the variances of serum metabolome. (A) The contribution of host and gut
microecological features on serum metabolite profile. This result came from permutational multivariate analysis of variance (PERMANOVA) of
overall serum metabolite levels based on separate models for each feature group and combined models. The bars for each group represent the
cumulative explained variance of each group of features. (B–D) The variance in serum metabolite profile explained by the top 12 species (B), 15
MetaCyc pathways (C), and 15 fecal metabolites (D). (E) A polar bar plot illustrates the extent of variance explained by gut microecological
features for each serum metabolite. The figure includes only those metabolites with an explained variance greater than 1%. Abbreviations: 3S-
GLCA: sulfated glycosylcholic acid; EPA: eicosapentaenoic acid; HPHPA: 3-(3-Hydroxyphenyl)-3- hydroxypropanoic acid.
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adjusted HR in Fig. 3B and C), along with serum
metabolites (citramalic acid, sebacic acid, oxoglutaric
acid, and glycoursodeoxycholic acid), were positively
correlated, whereas serum eicosapentaenoic acid (EPA),
chenodeoxycholic acid, suberic acid, and indoleacetic
acid were inversely associated with the incidence of
cardiometabolic diseases (Fig. 4A–I). The associations of
32-SMS with the risk of MS (HR 1.66, P < 2E-16) and
CAP (HR 1.18, P = 1.29E-6) remained significant even
after further adjusting for BMI as a confounding
factor for sensitivity analyses. Additionally, significant
nonlinear associations were observed between serum
metabolites of EPA (Fig. 4H), suberic acid (Fig. 4F),
sebacic acid (Fig. 4D), and glycoursodeoxycholic acid
(Fig. 4I) and CAP risk, as well as between citramalic acid
and MS risk (Fig. 4A).

Associations of GMM-SMs, serum proteins and
incident cardiometabolic disease
We conducted an untargeted serum proteomics analysis
to augment and contextualize our findings from serum
metabolite and cardiometabolic incidence studies. A
Sankey diagram illustrated the interplay between GMM-
SMs, serum proteins, and cardiometabolic incidence.
Notably, the 32-SMS and specific serum proteins
(apolipoprotein A-I [apoA-I], glutathione peroxidase
3 [GPX3], sex hormone-binding globulin [SHBG], and
C-type lectin domain family 3 member B [CLEC3B]
www.thelancet.com Vol 105 July, 2024
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Fig. 3: Associations of GMM-explained serum metabolites with serum proteins, CVD risk factors, and MS and CAP incidences.
(A) The heatmap shows the standardized beta coefficients between serum metabolites and proteins using linear regression and correlation
coefficients between serum metabolites and CVD risk factors using Spearman correlation, alongside their corresponding P values. The forest plot
presents the adjusted hazard ratios (HRs) and 95% confidential intervals (95% CI) of incident MS and CAP by each quintile increase in the top 32
GMM-explained serum metabolites and the 32-metabolite score (32-SMS), as analyzed by the Cox regression model. Significance levels are
indicated as * P < 0.05, **P < 0.01, ***P < 0.001. (B, C) Relative risks (RRs) and their 95% CIs of incident MS (B) and CAP (C) in relation to the
32-SMS. We analyzed using a linear model and restricted cubic spline method of Cox regression. The reference value is set at the median of the
first quintile in the 32-SMS with nodes at the 20th, 40th, 60th, and 80th percentiles. The 32-SMS was developed using the β coefficients
between the top 32 GMM-explained serum metabolites and MS incidence. Covariates adjusted: age, sex, education, household income, marital
status, smokers, tea drinkers, alcohol drinkers, physical activity, multivitamin use, and daily energy intake. Abbreviations: APOA1: apolipoprotein
A1; APOC2: apolipoprotein C2; APOC3: apolipoprotein C3; APOH: apolipoprotein H; APOL1: apolipoprotein L1; APOM: apolipoprotein M; AZGP1:
alpha-2-glycoprotein 1, zinc-binding; BMI: body mass index; C3: complement protein 3; CAP: carotid atherosclerotic plaque; cIMT-BIF: carotid
intima-media thickness at the bifurcation; CLEC3B: c-type lectin domain family 3 member B; CVD: cardiovascular disease; FCN3: Ficolin 3; GC: GC
vitamin D binding protein; GLCA-3S: sulfated glycosylcholic acid; GMM: gut microbiota and metabolites; GPX3: glutathione peroxidase 3; HDL-c,
high-density lipoprotein cholesterol; HOMA-IR, homeostasis model assessment-insulin resistance; hs-CRP: high sensitivity C-Reactive Protein;
IL-6: interleukin-6; LRG1: leucine-rich alpha-2 glycoprrotein 1; MS: metabolic syndrome; ORM2: orosomucoid 2; PON1: paraoxonase and
arylesterase 1; PROS1: protein S; RR: relative risk; SBP: systolic blood pressure; SHBG: sex hormone binding globulin; TC, total cholesterol; TG:
triglycerides.
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Fig. 4: Associations of top GMM-explained serum metabolites and incident MS and CAP. A-C, the adjusted relative risks (RRs) and 95%
confidential intervals (95% CI) of incident metabolic syndrome (MS) associated with serum citramalic acid (A), oxoglutaric acid (B), and indoleacetic
acid (C). D-I, Adjusted RRs and 95% CI of incident carotid atherosclerotic plaque (CAP) associated with serum sebacic acid (D), indoleacetic acid (E),
suberic acid (F), chenodeoxycholic acid (G), eicosapentaenoic acid (H), and glycoursodeoxycholic acid (I), respectively. The restricted cubic spline
method of Cox regression was used for the analysis. The reference point was set at the median of the first quintile in the serum metabolites with
values above zero, with nodes positioned at the 20th, 40th, 60th, and 80th percentiles. Covariates adjusted in these analyses: age, sex, education,
household income, marital status, smokers, tea drinkers, alcohol drinkers, physical activity, multivitamin use, daily energy intake, and other sig-
nificant serum metabolites identified through step-wise variable selection. A forward selection process in the Cox model was utilized to determine
the most predictive variables (P < 0.05) from the potential candidates. The Cox proportional-hazards model was employed to develop the model
and estimate the coefficients for each predictor, indicating the RR per quintile. GMM: gut microbiota and metabolites.
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showed inverse associations, and these proteins were
also inversely associated with MS incidence. Conversely,
32-SMS was positively associated with orosomucoid 2
(ORM2), apoC-II, apoC-III, apoL-I, and complement
protein 3 (C3), which in turn were positively linked to
MS incidence (Fig. 5). Our data satisfied all linear
regression model prerequisites: linear relationships,
error term normality and homoscedasticity, and obser-
vation independence (Fig. S2). The P-value associated
with a global test of proportionality in the Cox models
were reported in Table S13, which suggested evidence
of proportionality (all P > 0.40).

Network between GMM, SMs and cardiometabolic
traits
A comprehensive network delineates the intricate con-
nections between GMM, SMs, and cardiometabolic
traits, with relationships quantified by Spearman cor-
relation coefficients (Fig. 6). Central to this network are
nodes including key SMs (glutamic acid, pyroglutamic
acid, L-phenylalanine, citramatic acid, oxoglutaric acid,
sebacic acid, suberic acid, and glycoursodeoxycholic
acid). These nodes link GMM constituents to various
cardiovascular risk factors. The GMM constituents
included particularly microbial species from Eubacte-
rium, Clostridium, and Ruminococcus genera, metabolic
pathways (e.g., urea cycle [PWY4984], L-proline biosyn-
thesis [PWY4981], and tetrapyrrole biosynthesis I
[PWY5188]), and specific fecal metabolites (like fatty
acids [sebacic acid and suberic acid], bile acids [urso-
deoxycholic acid, nordeoxycholic acid, muro cholic acid,
and glycoursodeoxycholic acid]) (Fig. 6).
Discussion
This study demonstrates that the combined GMM fac-
tors (species, MetaCyc pathways, and fecal metabolome)
accounted for 15.1% of the variance in total SM profiles
www.thelancet.com Vol 105 July, 2024
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Fig. 5: Interrelationships among GMM-explained serum metabolite indices, CVD-related proteins, and incident MS based on regression
coefficients. This illustrates the standardized β coefficients from linear regression associations between GMM-explained serum metabolites and
serum proteins, as well as β coefficients between serum proteins (per quintile) and incident metabolic syndrome (MS) by Cox regression. We
adjusted the P-values by using the Benjamini-Hochberg false discovery rate (FDR) method. Light pink and blue connections indicate positive and
inverse correlations (FDR<0.05). Rectangles represent GMM-explained serum metabolite indices (left), serum proteins (middle), and incident MS
(right). Abbreviations: APOA1: apolipoprotein A1; APOC2: apolipoprotein C2; APOC3: apolipoprotein C3; APOH: apolipoprotein H; APOL1:
apolipoprotein L1; APOM: apolipoprotein M; AZGP1: alpha-2-glycoprotein 1, zinc-binding; C3: complement protein 3; CAP: carotid athero-
sclerotic plaque; CLEC3B: c-type lectin domain family 3 member B; CVD: cardiovascular disease; FCN3: Ficolin 3; GC: GC vitamin D binding
protein; GMM: gut microbiota and metabolites; GPX3: glutathione peroxidase 3; LRG1: leucine-rich alpha-2 glycoprotein 1; MS: metabolic
syndrome; ORM2: orosomucoid 2; PON1: paraoxonase and arylesterase 1; PROS1: protein S; SHBG: sex hormone binding globulin.
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and a substantial 5.5%–49.6% in 32 individual SM
profiles. Particularly noteworthy among these top 32
GMM-explained SMs, the 32-SMS, along with citramalic
acid, oxoglutaric acid, EPA, indoleacetic acid, suberic
acid, chenodeoxycholic acid, glycoursodeoxycholic acid,
and sebacic acid emerged as key SMs linking GMM and
the incidence of MS and CAP. The elucidation of these
GMM-associated SMs, their related proteins, and their
interplay with cardiometabolic health offers a solid
foundation for identifying potential intervention targets
and deepening our understanding of the role of gut
microbiome in health modulation.

The contribution of GMM on serum metabolome
The interplay between gut microbiota and the host
significantly influences SM composition and their con-
centrations. This study highlights the notable influence of
GMM on the serum metabolome, explaining 15.1% of its
www.thelancet.com Vol 105 July, 2024
variance. This is comparable to findings from two recent
studies: one with 491 Israeli participants reporting a
30.8% influence,6 and another with 1368 participants
from the Netherlands showing a 12.8%–27.8% impact.7

Notably, the primary SM categories influenced by GMM
vary across populations. In the Israeli individuals, xeno-
biotics, unidentified metabolites, and lipids were pre-
dominantly affected,6 while in the Dutch study, microbial
abundances contributed 0.04%–25.1% variance in 208 of
1183 plasma metabolites, with p-cresol, sulfurous acid, p-
cresol sulfate, acetyl-N-formyl-5-methoxykynurenamine,
and 2,3-diketogulonate being the most impacted.7

Our analysis of 168 SMs revealed that over 40% of
the variance in 3S-GLCA (bile acids), 2-phenylpropionic
acid, and hydrocinnamic acid (phenylpropanoic acids)
could be attributed to microecological factors. This
finding positions our study as the first to identify SM
signatures significantly influenced by GMM. However,
9
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Fig. 6: Network illustrating relationships between gut microecological signatures, serum metabolites and cardiometabolic traits. The
network diagram visualizes the relationships between gut microecological signatures, serum metabolites, and cardiometabolic traits, con-
structed based on Spearman coefficients exceeding 0.12 (all P < 0.00015). Each dot represents a distinct feature, with the size indicating the
number of connections. The color of the lines, blue for inverse and red for positive correlations, along with their thickness, represents the
strength of the associations. Key elements are color-coded for easy identification: green round rectangles for species, purple parallelograms for
MetaCyc pathways, orange diamonds for fecal metabolites, red ellipses for blood metabolites, and blue triangles for cardiometabolic traits.
Abbreviations: ANDROID_PFAT, fat mass percentage at the android region; BIF, carotid intima-media thickness of the bifurcation; CCA, carotid
intima-media thickness of the common carotid artery; FPS, Framingham point score; GLU, fasting blood glucose; GYNOID_PFAT, fat mass
percentage at the gynoid region; HbA1c, glycated hemoglobin; HDL-c, high-density lipoprotein cholesterol; HOMA-IR, homeostasis model
assessment-insulin resistance; hs-CRP, high sensitivity C-Reactive Protein; IL-1β, interleukin-1β; IL-6, interleukin-6; LDL-c, low-density lipo-
protein cholesterol; NorDCA, nordeoxycholic acid; TC, total cholesterol; TG, triglyceride; TNF-α, tumor necrosis factor-α; WB_PFAT, fat mass
percentage at the whole body. s_: species; f_: fecal metabolites; b_: blood metabolites.
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given the limited evidence and substantial between-
population heterogeneity, further research is essential
to elucidate the global influence of GMM on the serum
metabolome.

Microecological contributors for SMs
Unraveling the microecological contributors to SM
profiles is pivotal for pinpointing target microbiota for
health intervention and understanding microbiome–
health interactions. This research marks a pioneering
effort in delineating the key features of microbial
species, pathways, and fecal metabolites correlating with
SMs in an Asian population. A significant finding is the
role of Eubacterium hallii in shaping the microbiota-SM
relationship. In terms of serum bile acids, Clostridium
genus and fecal lithocholic acid emerged as the primary
predictors for the most explained two bile acids (serum
3S-GLCA and glycodeoxycholic acid). Intriguingly, both
Eubacterium hallii and genus Clostridium belong to the
Firmicutes phylum, identified as the principal bacterial
influence on blood metabolites in Bar et al.’ study.6

Lithocholic acid, a microbiota-derived monohydroxy
www.thelancet.com Vol 105 July, 2024
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bile acid22 and primarily existing in the form of a con-
jugate called GLCA,23 underscores the microbiome’s
significant role in metabolite modulation. These
insights offer valuable targets within GMM for potential
interventions aimed at altering SM profiles.

Role of GMM-related SMs in cardiometabolic health
This study underscores the significant correlations
between certain GMM-related SMs and cardiometabolic
disease incidence. Specifically, serum citramalic acid
and sebacic acid levels exhibited positive correlations,
while serum EPA, chenodeoxycholic acid, and indole-
acetic acid levels were inversely associated with MS or
CAP incidence. Citramalic acid, known to be produced
by microbiota,24 and sebacic acid, a key intermediate in
the tricarboxylic acid cycle, have been linked to cardio-
vascular health. Notably, sebacic acid levels were
elevated in atherosclerotic rat models.25 EPA, a long-
chain omega-3 polyunsaturated acid, is renowned for
its cardioprotective properties,26–28 including plasma
triglyceride reduction,27 reducing proinflammatory
cytokines,29 and inhibiting plaque progression in those
with coronary heart disease.29 Chenodeoxycholic acid, an
endogenous metabolite, is implicated in anti-tumor
activity via the Epidermal Growth Factor Receptor/
Stat3 pathway30 and correlates positively with lean body
mass levels.31 Indolepropionic acid can catalyze the
synthesis of indoleacetic acid.32 Dietary indolepropionic
acid supplementation attenuates atherosclerotic pla-
ques.33 These collectively highlight the potential of
GMM-explained SMs (e.g., sebacic acid, EPA, and
indoleacetic acid) in modulating cardiometabolic disease
risk.

Interplay of SMs, proteins, and cardiometabolic
disease incidence
This study sheds light on the intricate relationship
between SMs, closely linked to GMM, and serum
proteins related to CVD, offering insights for future
interventions targeting specific proteins to mitigate
CVD risk. Among GMM-SM-related serum proteins,
apoA-I exhibited a negative association with MS inci-
dence. Notably, fat-free apoA-I interacts with the
adenosine 5’triphosphate-binding cassette transporter
A1, aiding in the creation of nascent HDL particles in
the gut.33,34 In contrast, GMM-SM-related apoC-II,
apoC-III, and C3 levels showed positive association
with incident MS in this population. ApoC, synthe-
sized in the gut,35 plays a crucial role in lipid meta-
bolism. Elevated apoC-II levels are associated with an
increase in triglyceride-rich particles and changes in
HDL particle distribution, potentially heightening CVD
risk.36 ApoC-III contributes to atherosclerosis progres-
sion by facilitating the retention and accumulation of
LDL in the subendothelial space, and by stimulating
inflammatory cascades and the proliferation of smooth
muscle cells.36,37 In addition, C3, a crucial complement,
www.thelancet.com Vol 105 July, 2024
is implicated in various metabolic disorders, particu-
larly obesity, dyslipidemia, insulin resistance, and
diabetes.38 Taken together, these results indicate that
the notable correlations between GMM-SMs and
cardiometabolic diseases may be partly ascribed to the
modulation of specific apolipoproteins and C3.

Potential mechanisms linking GMM, SMs, proteins
and cardiometabolic health
Our study revealed an inverse association of the species
Ruminococcus_obeum and fecal 3-Methyladipic acid with
serum citramalic acid. Intriguingly, citramalic acid,
linked to C3, which was positively correlated to incident
MS. Both 3-methyladipic acid and citramalic acid, clas-
sified as organic acids,39 have distinctive biosynthesis
pathways and health implications. Prior research has
demonstrated that citramalic acid can be synthesized by
the microbiota.24 In another study, citramalic acid was
higher in obese women.40 Increasing evidence high-
lights the ability of C3 that might lead to MS. C3ade-
sArg, also referred to as the acylation stimulation factor,
augments the synthesis and discharge of triglycerides in
adipocytes. These physiological impacts substantially
contribute to the emergence of MS.41

Strengths
This study stands out with several notable strengths.
Primarily, to our knowledge, it is the first to delineate
the signatures of GMM-related SMs and to investigate
their association with serum proteins and the risk of
incident MS and CAP, utilizing a comprehensive
approach that includes both microecological and host
multi-omics. Another significant advantage was the use
of metagenomics for microbiota analysis, providing a
more detailed representation compared to the 16S rRNA
method. Additionally, the additional analysis of the fecal
metabolome substantially improved our understanding
and explanation of SMs beyond what metagenomic
analysis alone could offer. Furthermore, the substantial
size of the study bolstered the statistical power necessary
to detect meaningful associations between the variables.
This robust study design has enabled a deeper explora-
tion of the complex interplay between fecal microbiome,
SMs, and cardio-metabolic health, thereby contributing
valuable insights to this field of research.

Caveats and limitations
Despite its strengths, this study is subject to several
caveats and limitations. Firstly, the nature of the obser-
vational study precludes the establishment of causality in
the observed associations, necessitating validation
through further experimental studies. Given the
impracticality of long-term germ-free humans and the
substantial differences in intestinal microecology
between humans and animals, our research offers valu-
able evidence for potential interventions and under-
standing of microecological features in cardiometabolic
11
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health. Secondly, the recruitment of participants from a
single city might impose limitations on the generaliz-
ability of our findings to other ethnicities or regions,
especially considering the significant microbiota varia-
tions across different genetic and environmental back-
grounds.38 Thirdly, the need for replication cohort studies
is evident to reinforce our findings and minimize
the possibility of chance results. While our study presents
a significant contribution to the existing scientific
knowledge, corroborating these findings in diverse pop-
ulations is essential. Lastly, a longitudinal omics analysis
over an extended period and at regular intervals would
yield deeper insights into the onset and progression of
cardiometabolic diseases. Our choice to use mid-term
samples from our cohort was driven by the substantial
advancements in multi-omics techniques over recent
years, and the pivotal role of mid-term GMM and SMs
status in understanding the development of MS and CAP.

Conclusions and implications
This study reveals the significant influence of GMM on
SM profiles, particularly identifying key serum metab-
olites linked to MS and CAP incidence. These findings
offer valuable insights into potential intervention targets
and enhance our understanding of the role of micro-
biome in health via SMs. The complex relationships
between gut microecology, metabolomics, proteomics,
and cardiometabolic health could lead to personalized
treatment strategies for these prevalent diseases. This
knowledge is especially pertinent for developing novel
therapeutic interventions, particularly for managing
complex health conditions in the elderly.
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